UWaterloo at SemEval-2017 Task 8: Detecting Stance towards Rumours with Topic Independent Features

نویسندگان

  • Hareesh Bahuleyan
  • Olga Vechtomova
چکیده

This paper describes our system for subtask-A: SDQC for RumourEval, task8 of SemEval 2017. Identifying rumours, especially for breaking news events as they unfold, is a challenging task due to the absence of sufficient information about the exact rumour stories circulating on social media. Determining the stance of Twitter users towards rumourous messages could provide an indirect way of identifying potential rumours. The proposed approach makes use of topic independent features from two categories, namely cue features and message specific features to fit a gradient boosting classifier. With an accuracy of 0.78, our system achieved the second best performance on subtask-A of Ru-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turing at SemEval-2017 Task 8: Sequential Approach to Rumour Stance Classification with Branch-LSTM

This paper describes team Turing’s submission to SemEval 2017 RumourEval: Determining rumour veracity and support for rumours (SemEval 2017 Task 8, Subtask A). Subtask A addresses the challenge of rumour stance classification, which involves identifying the attitude of Twitter users towards the truthfulness of the rumour they are discussing. Stance classification is considered to be an importan...

متن کامل

IITP at SemEval-2017 Task 8 : A Supervised Approach for Rumour Evaluation

This paper describes our system participation in the SemEval-2017 Task 8 ‘RumourEval: Determining rumour veracity and support for rumours’. The objective of this task was to predict the stance and veracity of the underlying rumour. We propose a supervised classification approach employing several lexical, content and twitter specific features for learning. Evaluation shows promising results for...

متن کامل

Mama Edha at SemEval-2017 Task 8: Stance Classification with CNN and Rules

For the competition SemEval-2017 we investigated the possibility of performing stance classification (support, deny, query or comment) for messages in Twitter conversation threads related to rumours. Stance classification is interesting since it can provide a basis for rumour veracity assessment. Our ensemble classification approach of combining convolutional neural networks with both automatic...

متن کامل

JU_NLP at SemEval-2016 Task 6: Detecting Stance in Tweets using Support Vector Machines

We describe the system submitted to the SemEval-2016 for detecting stance in tweets (Task 6, Subtask A). One of the main goals of stance detection is to automatically determine the stance of a tweet towards a specific target as ‘FAVOR’, ‘AGAINST’, or ‘NONE’. We developed a supervised system using Support Vector Machines to identify the stance by analyzing various lexical and semantic features. ...

متن کامل

NLDS-UCSC at SemEval-2016 Task 6: A Semi-Supervised Approach to Detecting Stance in Tweets

Stance classification aims to identify, for a particular issue under discussion, whether the speaker or author of a conversational turn has Pro (Favor) or Con (Against) stance on the issue. Detecting stance in tweets is a new task proposed for SemEval-2016 Task6, involving predicting stance for a dataset of tweets on the topics of abortion, atheism, climate change, feminism and Hillary Clinton....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017